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A CONTINUOUS TIME APPROACH FOR THE ASYMPTOTIC
VALUE IN TWO-PERSON ZERO-SUM REPEATED GAMES∗
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Abstract. We consider the asymptotic value of two person zero-sum repeated games with
general evaluations of the stream of stage payoffs. We show existence for incomplete information
games, splitting games, and absorbing games. The technique of proof consists of embedding the
discrete repeated game into a continuous time game and to use viscosity solution tools.
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1. Introduction. We study the asymptotic value of two person zero-sum re-
peated games. Our aim is to show that techniques which are typical in continuous time
games (“viscosity solution”) can be used to prove the convergence of the discounted
value of such games as the discount factor tends to 0, as well as the convergence of
the value of the n-stage games as n → +∞ and to the same limit. The originality
of our approach is that it provides the same proof for both classes of problems. It
also allows us to handle general decreasing evaluations of the stream of stage payoffs,
as well as situations in which the payoff varies “slowly” in time. We illustrate our
purpose through three typical problems: repeated games with incomplete information
on both sides, first analyzed by Mertens and Zamir [11], splitting games, considered
by Laraki [6], and absorbing games, studied in particular by Kohlberg [5]. For the
splitting games, we show in particular that the value of the n-stage game has a limit,
which was not previously known.

In order to better explain our approach, we first recall the definition of the Shapley
operator for stochastic games and its adaptation to games with incomplete informa-
tion. Then we briefly describe the operator approach and its link to the viscosity
solution techniques used in this paper.

1.1. Discounted stochastic games and Shapley operator. A stochastic
game is a repeated game where the state changes from stage to stage according to a
transition depending on the current state and the moves of the players. We consider
the two person zero-sum case.
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The game is specified by a state space Ω, move sets I and J , a transition prob-
ability ρ from I × J × Ω → Δ(Ω), and a payoff function g from I × J × Ω → R. All
sets A under consideration are finite and Δ(A) denotes the set of probabilities on A.

Inductively, at stage n = 1, . . . , knowing the past history hn = (ω1, i1, j1, . . . , in−1,
jn−1, ωn), player 1 chooses in ∈ I, and player 2 chooses jn ∈ J . The new state
ωn+1 ∈ Ω is drawn according to the probability distribution ρ(in, jn, ωn). The triplet
(in, jn, ωn+1) is publicly announced and the situation is repeated. The payoff at stage
n is gn = g(in, jn, ωn) and the total payoff is the discounted sum

∑
n λ(1 − λ)n−1gn

with λ ∈]0, 1].
This discounted game has a value vλ (Shapley [16]).
The Shapley operatorT(λ, ·) associates to a function f in R

Ω the function T(λ, f),
with

T(λ, f)(ω) = valΔ(I)×Δ(J)

[
λg(x, y, ω) + (1− λ)

∑
ω̃

ρ(x, y, ω)(ω̃)f(ω̃)

]
,(1)

where for x ∈ Δ(I), y ∈ Δ(J), g(x, y, ω) = Ex,yg(i, j, ω) =
∑

i,j xiyjg(i, j, ω) is the
multilinear extension of g(., ., ω) and similarly for ρ(., ., ω), and val is the value oper-
ator

valΔ(I)×Δ(J) = max
x∈Δ(I)

min
y∈Δ(J)

= min
y∈Δ(J)

max
x∈Δ(I)

.

The Shapley operator T(λ, ·) is well defined from R
Ω to itself. Its unique fixed point

is vλ (Shapley [16]).
We will briefly write (1) as T(λ, f)(ω) = val{λg + (1− λ)Ef}.

1.2. Extension: Repeated games. A recursive structure leading to an equa-
tion similar to (1) holds in general for repeated games, described as follows: M is
a finite parameter space and g a function from I × J × M to R. For each m ∈ M
this defines a two person zero-sum game with action spaces I and J for player 1 and
2, respectively, and payoff function g(., .,m). The initial parameter m1 is chosen at
random and the players receive some initial information about it, say a1 (resp., b1)
for player 1 (resp., player 2). This choice is performed according to some initial prob-
ability π on A×B ×M , where A and B are the signal sets of both players. At each
stage n, player 1 (resp., 2) chooses an action in ∈ I (resp., jn ∈ J). This determines a
stage payoff gn = g(in, jn,mn), where mn is the current value of the parameter. Then
a new value of the parameter is selected and the players get some information. This is
generated by a map ρ from I×J×M to probabilities on A×B×M . Hence at stage n
a triple (an+1, bn+1,mn+1) is chosen according to the distribution ρ(in, jn,mn). The
new parameter is mn+1, and the signal an+1 (resp., bn+1) is transmitted to player
1 (resp., player 2). Note that each signal may reveal some information about the
previous choice of actions (in, jn) and both the previous (mn) and the new (mn+1)
values of the parameter.

Stochastic games correspond to public signals, including the current value of the
parameter.

Incomplete information games correspond to an absorbing transition on the pa-
rameter (which thus remains fixed) and no further information (after the initial one)
on the parameter.

Mertens, Sorin, and Zamir [12, section IV.3] associate to each such repeated game
G an auxiliary stochastic game Γ having the same discounted values that satisfy a
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recursive equation of the type (1). However, the play, and hence the strategies in both
games differs.

More precisely, in games with incomplete information on both sides, M is a
product space K × L, π is a product probability p ⊗ q with p ∈ P = Δ(K), q ∈
Q = Δ(L), and, in addition, a1 = k and b1 = �. Given the parameter m = (k, �),
each player knows his or her own component and holds a prior on the other player’s
component. From stage 1 on, the parameter is fixed and the information of the players
after stage n is an+1 = bn+1 = {in, jn}.

The auxiliary stochastic game Γ corresponding to the recursive structure can be
taken as follows: the “state space” Ω is P ×Q and is interpreted as the space of beliefs
on the true parameter.

X = Δ(I)K and Y = Δ(J)L are the type-dependent mixed action sets of the
players; g is extended on X×Y × P ×Q by g(x, y, p, q) =

∑
k,� pkq�g(xk, y�, k, �).

Given (x, y, p, q) ∈ X × Y × P × Q, let x(i) =
∑

kx
k
i p

k be the probability of
action i, and let p(i) be the conditional probability on K given the action i; explicitly,

pk(i) =
pkxk

i

x(i) (and similarly for y and q).

In this framework the Shapley operator is defined on the set F of continuous
concave-convex functions on P ×Q by

T(λ, f)(p, q) = valX×Y

⎡
⎣λg(x, y, p, q) + (1 − λ)

∑
i,j

x(i)y(j)f(p(i), q(j))

⎤
⎦ ,(2)

which is the new formulation of T(λ, f)(ω) = val{λg+(1−λ)Ef} and the discounted
value vλ(p, q) is the unique fixed point of T(λ, .) on F . These relations are due to
Aumann and Maschler [1] and Mertens and Zamir [11].

1.3. Extension: General evaluation. The basic formula expressing the dis-
counted value as a fixed point of the Shapley operator

(3) vλ = T(λ, vλ)

can be extended for values of games with the same plays but alternative evaluations
of the stream of payoffs {gn}.

For example, the n-stage game, with payoff defined by the Cesaro mean 1
n

∑n
m=1 gm

of the stage payoffs, has a value vn, and the recursive formula for the corresponding
family of values is obtained similarly as

vn = T

(
1

n
, vn−1

)

with, obviously, v0 = 0.
Consider now an arbitrary evaluation probability μ on N

� = N \ {0}. The as-
sociated payoff in the game is

∑
n μngn. Note that μ induces a partition Π = {tn}

of [0, 1] with t0 = 0, tn =
∑n

m=1 μm, . . . , and thus the repeated game is naturally
represented as a game played between times 0 and 1, where the actions are constant
on each subinterval (tn−1, tn) the length of which is μn is the weight of stage n in the
original game. Let vΠ be its value. The corresponding recursive equation is now

vΠ = val{t1g1 + (1 − t1)EvΠt1
},

where Πt1 is the normalization on [0, 1] of the trace of the partition Π on the interval
[t1, 1].
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If one defines VΠ(tn) as the value of the game starting at time tn, i.e., with
evaluation μn+m for the payoff gm at stage m, one obtains the alternative recursive
formula

(4) VΠ(tn) = val{μn+1g1 + EVΠ(tn+1)}.

The stationarity properties of the game form in terms of payoffs and dynamics induce
time homogeneity

(5) VΠ(tn) = (1− tn)VΠtn
(0),

where, as above, Πtn stands for the normalization of Π restricted to the interval [tn, 1].
By taking the linear extension of {VΠ(tn)}, we define for every partition Π a

function VΠ(t) on [0, 1].
Lemma 1. Assume that the sequence {μn} is decreasing. Then VΠ is C-Lipschitz

in t, where C is a uniform bound on the payoffs in the game.
Proof. Given a pair of strategies (σ, τ) in the game G with evaluation Π starting

at time tn in state ω, the total payoff can be written in the form

Eω
σ,τ [μn+1g1 + · · ·+ μn+kgk + · · · ],

where gk is the payoff at stage k. Assume now that σ is optimal in the game G with
evaluation Π starting at time tn+1 in state ω; then the alternative evaluation of the
stream of payoffs satisfies, for all τ ,

Eω
σ,τ [μn+2g1 + · · ·+ μn+k+1gk + · · · ] ≥ VΠ(tn+1, ω).

It follows that

VΠ(tn, ω) ≥ VΠ(tn+1, ω)− |Eω
σ,τ [(μn+1 − μn+2)g1 + · · ·+ (μn+k − μn+k+1)gk + · · · ]|;

hence μn being decreasing:

VΠ(tn, ω) ≥ VΠ(tn+1, ω)− μn+1C.

This and the dual inequality imply that the linear interpolation VΠ(., ω) is a
C-Lipschitz function in t.

1.4. Asymptotic analysis: Previous results. We consider now the asymp-
totic behavior of vn as n goes to ∞ or of vλ as λ goes to 0. For games with incomplete
information on one side, the first proofs of the existence of limn→∞ vn and limλ→0 vλ
are due to Aumann and Maschler [1], including in addition an identification of the
limit as CavΔ(K)u. Here u(p) = valΔ(I)×Δ(J)

∑
k p

kg(x, y, k) is the value of the one
shot nonrevealing game, where the informed player does not use his information and
CavC is the concavification operator: given φ, a real bounded function defined on a
convex set C, CavC(φ) is the smallest function greater than φ and concave on C.

Extensions of these results to games with a lack of information on both sides were
achieved by Mertens and Zamir [11]. In addition they identified the limit as the only
solution of the system of implicit functional equations with unknown φ:

φ(p, q) = Cavp∈Δ(K)min{φ, u}(p, q),(6)

φ(p, q) = Vexq∈Δ(L)max{φ, u}(p, q),(7)
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where Vex(f) = −Cav(−f). Here again u stands for the value of the nonrevealing
game:

u(p, q) = valΔ(I)×Δ(J)

∑
k,�

pkq�g(x, y, k, �),

and MZ will denote the corresponding operator

(8) φ = MZ(u).

As for stochastic games, the existence of limλ→0 vλ is due to Bewley and Kohlberg
[3] using algebraic arguments: the Shapley fixed point equation can be written as a
finite set of polynomial inequalities involving the variables {λ, xλ(ω), yλ(ω), vλ(ω);
ω ∈ Ω}, and thus it defines a semialgebraic set in some Euclidean space R

N , and
hence by projection vλ has an expansion in a Puiseux series of λ.

The existence of limn→∞ vn is obtained by an algebraic comparison argument;
see Bewley and Kohlberg [4].

The asymptotic values for specific classes of absorbing games with incomplete
information are studied in Sorin, [17], [18]; see also Mertens, Sorin, and Zamir [12].

1.5. Asymptotic analysis: Operator approach and comparison criteria.
Starting with Rosenberg and Sorin [15], several existence results for the asymptotic
value have been obtained based on the Shapley operator: continuous moves absorbing
and recursive games, games with incomplete information on both sides, and absorbing
games with incomplete information on one side (Rosenberg [14]).

We describe here an approach that was initially introduced by Laraki [6] for the
discounted case. The analysis of the asymptotic behavior for the discounted games
is simpler because of its stationarity: vλ is a fixed point of (3). Various discounted
game models have been solved using a variational approach (see Laraki [6], [7], [10]).

Our work is the natural extension of this analysis to more general evaluations of
the stream of stage payoffs including the Cesaro mean and its limit. Recall that each
such evaluation can be interpreted as a discretization of an underlying continuous
time game. We prove for several classes of games (incomplete information, splitting,
absorbing) the existence of a (uniform) limit of the values of the discretized contin-
uous time game as the mesh of the discretization goes to zero. The basic recursive
structure is used to formulate variational inequalities that have to be satisfied by any
accumulation point of the sequences of values. Then an ad-hoc comparison principle
allows us to prove uniqueness, and hence convergence. Note that this technique is
a transposition to discrete games of the numerical schemes used to approximate the
value function of differential games via viscosity solution arguments, as developed in
Barles and Souganidis [2]. The difference is that in differential games the dynamics is
given in continuous time, and hence the limit game is well defined and the question is
the existence of its value, while here we consider accumulation points of sequences of
functions satisfying an adapted recursive equation which is not available in continuous
time. Another main difference is that, in our case, the limit equation is singular and
does not satisfy the conditions usually required to apply the comparison principles.

To sum up, the paper unifies tools used in discrete and continuous time approaches
by dealing with functions defined on the product state × time space, in the spirit of
Vieille [21] for weak approachability or Laraki [8] for the dual game of a repeated
game with lack of information on one side; see also Sorin [20].
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2. Repeated games with incomplete information. Let us briefly recall the
structure of repeated games with incomplete information: at the beginning of the
game, the pair (k, �) is chosen at random according to some product probability p⊗q,
where p ∈ P = Δ(K) and q ∈ Q = Δ(L). Player 1 knows k, while player 2 knows
�. At each stage n of the game, player 1 (resp., player 2) chooses a mixed strategy
xn ∈ X = (Δ(I))K (resp., yn ∈ Y = (Δ(J))K). This determines an expected payoff
g(xn, yn, p, q).

2.1. The discounted game. We now describe the analysis in the discounted
case. The total payoff is given by the expectation of

∑
n λ(1− λ)ng(xn, yn, p, q), and

the corresponding value vλ(p, q) is the unique fixed point of T(λ, .) defined by (2) on
F (see [1], [11]). In particular, vλ is concave in p and convex in q.

We follow here Laraki [6]. Note that the family of functions {vλ(p, q)} is C-
Lipschitz continuous, where C is a uniform bound on the payoffs, and hence relatively
compact. To prove convergence it is enough to show that there is only one accumu-
lation point (for the uniform convergence on P ×Q).

Remark that by (3) any accumulation point w of the family {vλ} will satisfy

w = T(0, w),

i.e., is a fixed point of the projective operator, see Sorin [19, Appendix C].
Explicitly here, T(0, w) = valX×Y{

∑
i,j x(i)y(j)w(p(i), q(j))} = valX×YEx,y,p,q

w(p̃, q̃), where p̃ = (pk(i)) and q̃ = (ql(j)).
Let S be the set of fixed points ofT(0, ·), and let S0 ⊂ S be the set of accumulation

points of the family {vλ}. Given w ∈ S0, we denote by X(p, q, w) ⊆ X the set of
optimal strategies for player 1 (resp., Y(p, q, w) ⊆ Y for player 2) in the projective
game with value T(0, w) at (p, q). A strategy x ∈ X of player 1 is called nonrevealing
at p, x ∈ NRX(p) if p̃ = p a.s. (i.e., p(i) = p for all i ∈ I with x(i) > 0) and similarly
for y ∈ Y. The value of the nonrevealing game satisfies

u(p, q) = valNRX(p)×NRY(q)g(x, y, p, q).(9)

A subset of strategies is nonrevealing if all its elements are nonrevealing.
Lemma 2. Let w ∈ S0 and X(p, q, w) ⊂ NRX(p); then

w(p, q) ≤ u(p, q).

Proof. Consider a family {vλn} converging to w and xn ∈ X optimal forT(λn, vλn)
(p, q); see (2). Jensen’s inequality applied to (2) leads to

vλn(p, q) ≤ λng(xn, j, p, q) + (1− λn)vλn(p, q) ∀j ∈ J.

Thus

vλn(p, q) ≤ g(xn, j, p, q) ∀j ∈ J.

If x̄ ∈ X is an accumulation point of the family {xn}, then x̄ is still optimal in
T(0, w)(p, q). Since, by assumption X(p, q, w) ⊂ NRX(p), x̄ is nonrevealing, therefore
one obtains, as λn goes to 0,

w(p, q) ≤ g(x̄, j, p, q) ∀j ∈ J.
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So, by (9),

w(p, q) ≤ max
x∈NRX(p)

min
j∈J

g(x, j, p, q) = u(p, q).

Consider now w1 and w2 in S, and let (p0, q0) be an extreme point of the (convex
hull of) the compact set in P × Q, where the difference (w1 − w2)(p, q) is maximal
(this argument goes back to Mertens and Zamir [11]).

Lemma 3.

X(p0, q0, w1) ⊂ NRX(p0), Y(p0, q0, w2) ⊂ NRY(q0).

Proof. By definition, if x ∈ X(p0, q0, w1) and y ∈ Y(p0, q0, w2),

w1(p0, q0) ≤ Ex,y,p0,q0w1(p̃, q̃)

and

w2(p0, q0) ≥ Ex,y,p0,q0w2(p̃, q̃).

Hence (p̃, q̃) belongs a.s. to the argmax of w1 − w2, and the result follows from the
extremality of (p0, q0).

Proposition 4. limλ→0 vλ exists.
Proof. Let w1 and w2 be two different elements in S0, and suppose that maxw1−

w2 > 0. Let (p0, q0) be an extreme point of the (convex hull of) the compact set in
P ×Q, where the difference (w1−w2)(p, q) is maximal. Then Lemmas 2 (and its dual)
and 3 imply w1(p0, q0) ≤ u(p0, q0) ≤ w2(p0, q0), and hence we have a contradiction.
The convergence of the family {vλ} follows.

Given w ∈ S, let Ew(., q) be the set of p ∈ P such that (p, w(p, q)) is an extreme
point of the epigraph of w(., q).

Lemma 5. Let w ∈ S. Then p ∈ Ew(., q) implies X(p, q, w) ⊂ NRX(p).
Proof. Use the fact that if x ∈ X(p, q, w) and y ∈ NRY(q), then

w(p, q) ≤ Ex,y,p,qw(p̃, q̃) = Ex,pw(p̃, q).

Hence one recovers the characterization through the variational inequalities of
Mertens and (1971) [11], and one identifies the limit as MZ (u).

Proposition 6. limλ→0 vλ = MZ(u)
Proof. Use Lemma 5 and the characterization of Laraki [7] or Rosenberg and

Sorin [15].

2.2. The finitely repeated game. We now turn to the study of the finitely re-
peated game: recall that the payoff of the n-stage game is given by 1

n

∑n
k=1 g(xk, yk, p, q)

and that vn denotes its value. The recursive formula in this framework is

vn (p, q) = max
x∈X

min
y∈Y

⎡
⎣ 1

n
g(x, y, p, q) +

(
1− 1

n

)∑
i,j

x(i)y(j)vn−1(p(i), q(j))

⎤
⎦(10)

= T

(
1

n
, vn−1

)
.

Given an integer n ≥ 1, let Π be the uniform partition of [0, 1] with mesh 1
n and

write simply Wn for the associate function VΠ. Hence Wn(1, p, q) := 0, and for



1580 P. CARDALIAGUET, R. LARAKI, AND S. SORIN

m = 0, . . . , n− 1, Wn(
m
n , p, q) satisfies

(11)

Wn

(m
n
, p, q

)
= max

x∈Δ(I)K
min

y∈Δ(J)L

⎡
⎣ 1

n
g(x, y, p, q) +

∑
i,j

x(i)y(j)Wn

(
m+ 1

n
, p(i), q(j)

)⎤⎦.
Note that Wn(

m
n , p, q, ω) = (1 − m

n )vn−m(p, q, ω), and if Wn converges uniformly to
W, vn converges uniformly to some function v, with W (t, p, q) = (1− t) v(p, q).

Let T be the set of real continuous functions W on [0, 1]× P × Q such that for
all t ∈ [0, 1],W (t, ., .) ∈ S. X(t, p, q,W ) is the set of optimal strategies for player 1 in
T(0,W (t, ., .)), and Y(t, p, q,W ) is defined accordingly.

Let T0 be the set of accumulation points of the family {Wn} for the uniform
convergence.

Lemma 7. T0 �= ∅ and T0 ⊂ T .
Proof. Wn(t, ., .) is C-Lipschitz continuous in (p, q) for the L1 norm since the

payoff, given the strategies (σ, τ) of the players, is of the form
∑

k,� p
kq�Ak�(σ, τ).

Using Lemma 1 it follows that the family {Wn} is uniformly Lipschitz on [0, 1]×P×Q
and hence is relatively compact for the uniform norm. Note finally using (10) that T0 ⊂
T .

We now define two properties for a function W ∈ T and a C1 test function
φ : [0, 1] → R.

• P1: If t ∈ [0, 1) is such that X(t, p, q,W ) is nonrevealing and W (·, p, q)−φ(·)
has a global maximum at t, then u(p, q) + φ′(t) ≥ 0.

• P2: If t ∈ [0, 1) is such that Y(t, p, q,W ) is nonrevealing and W (·, p, q)−φ(·)
has a global minimum at t, then u(p, q) + φ′(t) ≤ 0.

Lemma 8. Any W ∈ T0 satisfies P1 and P2.
Note that this result is the variational counterpart of Lemma 2.
Proof. Let t ∈ [0, 1), and let p and q be such that X(t, p, q,W ) is nonrevealing,

and W (·, p, q)−φ(·) admits a global maximum at t. Adding the function s → (s− t)2

to φ if necessary, we can assume that this global maximum is strict.
Let Wnk

be a subsequence converging uniformly to W . Put m = nk and define

θ(m) ∈ {0, . . . ,m − 1} such that θ(m)
m is a global maximum of Wm(·, p, q) − φ(·) on

the set {0, . . . ,m − 1}. Since t is a strict maximum, one has θ(m)
m → t, as m → ∞.

From (11),

Wm

(
θ(m)

m
, p, q

)

= max
x∈X

min
y∈Y

⎡
⎣ 1

m
g(x, y, p, q) +

∑
i,j

x(i)y(j)Wm

(
θ(m) + 1

m
, p(i), q(j)

)⎤⎦ .

Let xm ∈ X be optimal for player 1 in the above formula, and let j ∈ J be any
(nonrevealing) pure action of player 2. Then

Wm

(
θ(m)

m
, p, q

)
≤ 1

m
g(xm, j, p, q) +

∑
i

xm(i)Wm

(
θ(m) + 1

m
, pm(i), q

)
.

By concavity of Wm with respect to p, we have

∑
i∈I

xm(i)Wm

(
θ(m) + 1

m
, pm(i), q

)
≤ Wm

(
θ(m) + 1

m
, p, q

)
,
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and hence,

0 ≤ g(xm, j, p, q) +m

[
Wm

(
θ(m) + 1

m
, p, q

)
−Wm

(
θ(m)

m
, p, q

)]
.

Since θ(m)
m is a global maximum of W(m)(·, p, q)− φ(·) on {0, . . . ,m− 1}, one has

Wm

(
θ(m) + 1

m
, p, q

)
−Wm

(
θ(m)

m
, p, q

)
≤ φ

(
θ(m) + 1

m

)
− φ

(
θ(m)

m

)

so that

0 ≤ g(xm, j, p, q) +m

[
φ

(
θ(m) + 1

m

)
− φ

(
θ(m)

m

)]
.

Since X is compact, one can assume without loss of generality that {xm} converges
to some x. Note that x belongs to X(t, p, q,W ) by upper semicontinuity using the
uniform convergence of Wm to W . Hence x is nonrevealing by hypothesis. Thus,
passing to the limit, one obtains

0 ≤ g(x, j, p, q) + φ′(t).

Since this inequality holds true for every j ∈ J , we also have

min
j∈J

g(x, j, p, q) + φ′(t) ≥ 0.

Taking the maximum with respect to x ∈ NRX(p) gives the desired result:

u(p, q) + φ′(t) ≥ 0.

The comparison principle in this case is given by the next result.
Lemma 9. Let W1 and W2 in T satisfy P1, P2, and
• P3: W1(1, p, q) ≤ W2(1, p, q) for any (p, q) ∈ Δ(K)×Δ(L).

Then W1 ≤ W2 on [0, 1]×Δ(K)×Δ(L).
Proof. We argue by contradiction, assuming that

max
t∈[0,1],p∈P,q∈Q

[W1(t, p, q)−W2(t, p, q)] = δ > 0.

Then, for ε > 0 sufficiently small,

(12) δ(ε) := max
t∈[0,1],s∈[0,1],p∈P,q∈Q

[
W1(t, p, q)−W2(s, p, q)−

(t− s)2

2ε
+ εs

]
> 0.

Moreover δ(ε) → δ as ε → 0.
We claim that there is (tε, sε, pε, qε), point of maximum in (12), such thatX(tε, pε,

qε,W1) is nonrevealing for player 1 and Y(sε, pε, qε,W2) is nonrevealing for player 2.
The proof of this claim is like Lemma 3 and follows again Mertens and Zamir [11].
Let (tε, sε, p

′
ε, q

′
ε) be a maximum point of (12) and C(ε) be the set of maximum points

in P ×Q of the function (p, q) → W1(tε, p, q)−W2(sε, p, q). This is a compact set. Let
(pε, qε) be an extreme point of the convex hull of C(ε). By Caratheodory’s theorem,
this is also an element of C(ε). Let xε ∈ X(tε, pε, qε,W1) and yε ∈ Y(sε, pε, qε,W2).
Since W1 and W2 are in T , we have

W1(tε, pε, qε)−W2(sε, pε, qε) ≤
∑
i,j

xε(i)yε(j) [W1(tε, pε(i), qε(j))−W2(sε, pε(i), qε(j))] .
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By optimality of (pε, qε), one deduces that, for every i and j with xε(i) > 0 and yε(j) >
0, (pε(i), qε(j)) ∈ C(ε). Since (pε, qε) =

∑
i,j xε(i)yε(j)(pε(i), qε(j)) and (pε, qε) is an

extreme point of the convex hull of C(ε), one concludes that (pε(i), qε(j)) = (pε, qε) for
all i and j: xε and yε are nonrevealing. Therefore we have constructed (tε, sε, pε, qε)
as claimed.

Finally we note that tε < 1 and sε < 1 for ε sufficiently small, because δ(ε) > 0
and W1(1, p, q) ≤ W2(1, p, q) for any (p, q) ∈ P ×Q by P3.

Since the map t → W1(t, pε, qε)− (t−sε)
2

2ε has a global maximum at tε, and since
X(tε, pε, qε,W1) is nonrevealing for player 1, condition P1 implies that

(13) u(pε, qε) +
tε − sε

ε
≥ 0.

In the same way, since the map s → W2(s, pε, qε)+
(tε−s)2

2ε − εs has a global minimum
at sε, and since Y(sε, pε, qε,W2) is nonrevealing for player 2, we have by condition
P2 that

u(pε, qε) +
tε − sε

ε
+ ε ≤ 0.

This latter inequality contradicts (13).
We are now ready to prove the convergence result for limn→∞ vn.
Proposition 10. Wn converges uniformly to the unique point W ∈ T that satis-

fies the variational inequalities P1 and P2 and the terminal condition W (0, p, q) = 0.
Consequently, vn(p, q) converges uniformly to v(p, q) = W (0, p, q) and W (t, p, q) =
(1− t)v(p, q), where v = MZ(u).

Proof. Let W ∈ T0. From Lemma 8, W satisfies the variational inequalities P1
and P2. Moreover,W (1, p, q) = 0. Since, from Lemma 9, there is at most one function
fulfilling these conditions, we obtain convergence of the family {Wn}. Consequently,
vn(p, q) converges uniformly to v(p, q) = W (0, p, q) and W (t, p, q) = (1− t)v(p, q).

In particular if one considers φ(t) = W (t, p, q) as a test function, then φ′(t) =
−v(p, q). Now P1 and P2 reduce to Lemma 2, and hence via Lemma 5 to the
variational characterization of MZ(u).

2.3. General evaluation. Consider now an arbitrarily evaluation probability
μ on N

∗, with μn ≥ μn+1, inducing a partition Π. Let VΠ(tk, p, q) be the value of the
game starting at time tk. One has VΠ(1, p, q) := 0 and

(14) VΠ(tn, p, q) = max
x∈X

min
y∈Y

⎡
⎣μn+1g(x, y, p, q) +

∑
i,j

x(i)y(j)VΠ(tn+1, p(i), q(j))

⎤
⎦ .

Moreover, VΠ belongs to F and is C-Lipschitz in (p, q).
Lemma 1 then implies that any family of values VΠ(m) associated to partitions

Π(m) with μ1(m) → 0 as m → ∞ has an accumulation point. Denote by T1 the set
of those functions. Then T1 ⊂ T by (14), and Lemma 8 extends in a natural way: let
V ∈ T1 and VΠ(m) → V uniformly. Let tmn be a global maximum of VΠ(m)(., p, q)−φ(.)
on Π(m). Then tmn → t, and one has

0 ≤ g(xn, j, p, q) +
1

μn(m)

[
VΠ(m)

(
tmn+1, p, q

)
− VΠ(m) (t

m
n , p, q)

]
,

hence

0 ≤ g(xn, j, p, q) +
1

μn(m)

[
φ(tmn+1)− φ (tmn )

]
,

and letting n → ∞, the result follows.
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Using Lemma 9, this implies the convergence. Thus we have the following.
Proposition 11. VΠ(m) converges uniformly to the unique point V ∈ T that sat-

isfies the variational inequalities P1 and P2 and the terminal condition V (0, p, q) = 0.
Consequently, vΠ(m)(p, q) converges uniformly to v(p, q) = V (0, p, q) and V (t, p, q)

= (1− t)v(p, q). Moreover v = MZ(u).
In particular, the convergence of {VΠ(m)} to the same limit for any family of

decreasing partitions allows us to use limλ→0 vλ to characterize the limit.

3. Splitting games. We consider now the framework of splitting games Sorin
[19, p. 78]. Let P and Q be two simplexes (or a product of simplexes) of some finite
dimensional spaces, and let H be a C-Lipschitz function from P × Q to R. The
corresponding Shapley operator is defined on continuous saddle (concave-convex) real
functions f on P ×Q by

T(λ, f)(p, q) = valμ∈MP
p ×ν∈MQ

q

∫
P×Q

[(λH(p′, q′) + (1− λ)f(p′, q′)]μ(dp′)ν(dq′),

where MP
p stands for the set of Borel probabilities on P with expectation p (and

similarly for MQ
q ).

The associated repeated game is played as follows: at stage n + 1, knowing the
state (pn, qn) player 1 (resp., player 2) chooses μn+1 ∈ MP

pn
(resp., ν ∈ MQ

qn). A new
state (pn+1, qn+1) is selected according to these distributions, and the stage payoff
is H(pn+1, qn+1). We denote by Vλ the value of the discounted game and by vn the
value of the n-stage game.

A procedure analogous to the previous study of discounted games with incomplete
information has been developed by Laraki [6], [7], [9].

3.1. The discounted game. The next properties are established in Laraki [7].
Let G be the set of C-Lipschitz saddle functions on P ×Q.
Lemma 12. The Shapley operator T(λ, ·) maps G to itself, and Vλ(p, q) is the

only fixed point of T (λ, .) in G.
The corresponding projective operator is the splitting operator Ψ:

(15) Ψ(f)(p, q) = valMP
p ×MQ

q

∫
P×Q

f(p′, q′)μ(dp′)ν(dq′),

and we denote again by S its set of fixed points. Given W ∈ S, P(p, q,W ) ⊂ MP
p

denotes the set of optimal strategies of player 1 in (15) for Ψ(W )(p, q). We say that
P(p, q,W ) is nonrevealing if it is reduced to δp, the Dirac mass at p. We use the
symmetric notation Q(p, q,W ) and terminology for player 2.

We define two properties for functions in S:
• A1: If P(p, q,W ) is nonrevealing, then W (p, q) ≤ H(p, q).
• A2: If Q(p, q,W ) is nonrevealing, then W (p, q) ≥ H(p, q).

Proposition 13. Vλ converges uniformly to the unique point V ∈ S that satisfies
the variational inequalities A1 and A2.

The link with the MZ operator is as follows: as in Lemma 5 one defines the
following properties:

• B1: If p ∈ EW (., q), then W (p, q) ≤ H(p, q).
• B2: If q ∈ EW (p, .), then W (p, q) ≥ H(p, q)

(where, as before, EV denotes the set of extreme points of a convex or concave map
V ). Then one has Ai implies Bi, i = 1,2, and the following.

Proposition 14. Let G ∈ G. Then G satisfies B1 and B2 iff G = MZ(H).
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3.2. The finitely repeated game. Recall the recursive formula, defining by
induction the value of the n-stage game vn ∈ G using Lemma 12:

vn (p, q) = valMP
p ×MQ

q

∫
P×Q

[
1

n
H(p′, q′) +

(
1− 1

n

)
vn−1(p

′, q′)
]
μ(dp′)ν(dq′)(16)

= T

(
1

n
, Vn−1

)
.

For each integer n ≥ 1, let Wn(1, p, q) := 0, and form = 0, . . . , n−1 defineWn(
m
n , p, q)

inductively as follows:
(17)

Wn

(m
n
, p, q

)
= valMP

p ×MQ
q

∫
P×Q

[
1

n
H(p′, q′) +Wn

(
m+ 1

n
, p′, q′

)]
μ(dp′)ν(dq′).

By induction we have Wn(
m
n , p, q) = (1− m

n )vn−m(p, q). Note that Wn is the function
on [0, 1]× P ×Q associated to the uniform partition of mesh 1

n .
Lemma 15. Wn is Lipschitz continuous uniformly in n on {m

n , m ∈ {0, . . . , n}}×
P ×Q.

Proof. By Lemma 12, Wn(t, ., .) belongs to G for any t. As for Lipschitz continuity
with respect to t, we have, if μ is optimal in (17) and by Jensen’s inequality,

Wn

(
m

n
, p, q

)
≤

∫
P×Q

1

n
H(p′, q) +Wn

(
m+ 1

n
, p′, q

)
dμ(p′)

≤ ‖H‖∞
n

+Wn

(
m+ 1

n
, p, q

)
.

One gets the reverse inequality Wn(
m
n , p, q) ≥ − ‖H‖∞

n +Wn(
m+1
n , p, q) with the sym-

metric arguments. Therefore Wn(·, p, q) is ‖H‖∞-Lipschitz continuous.
Let T be the set of real continuous functions W on [0, 1]×P ×Q such that for all

t ∈ [0, 1],W (t, ., .) ∈ S. P(t, p, q,W ) is defined as P(p, q,W (t, ., .)) and Q(t, p, q,W )
as Q(p, q,W (t, ., .)).

Let T0 be the set of accumulation points of the family Wn. Using (17), we have
that T0 ⊂ T .

We introduce two properties for a function W ∈ T and any C1 test function
φ : [0, 1] → R:

• PS1: If, for some t ∈ [0, 1), P(t, p, q,W ) is nonrevealing and W (·, p, q)−φ(·)
has a global maximum at t, then H(p, q) + φ′(t) ≥ 0.

• PS2: If, for some t ∈ [0, 1), Q(t, p, q,W ) is nonrevealing and W (·, p, q)−φ(·)
has a global minimum at t, then H(p, q) + φ′(t) ≤ 0.

Lemma 16. Any W ∈ T0 satisfies PS1 and PS2.
Proof. The proof is very similar to the proof of Lemma 8.
Let t ∈ [0, 1), and let p and q be such that P(t, p, q,W ) is nonrevealing, and

W (·, p, q)− φ(·) admits a global maximum at t. Adding (· − t)2 to φ if necessary, we
can assume that this global maximum is strict.

Let Wnk
be a sequence converging uniformly to W . Write m = nk and define

θ(m) ∈ {0, . . . ,m − 1} such that θ(m)
m is a global maximum of Wm(·, p, q) − φ(·) on
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{0, . . . ,m− 1}. Since t is a strict maximum, we have θ(m)
m → t. By (17) we have that

Wm

(
θ(m)

m
, p, q

)

= valMP
p ×MQ

q

∫
P×Q

[
1

m
H(p′, q′) +Wm

(
θ(m) + 1

m
, p′, q′

)]
μ(dp′)ν(dq′).

Let μm be optimal for player 1 in the above formula, and let ν = δq be the Dirac mass
at q. Then

Wm

(
θ(m)

m
, p, q

)
≤

∫
P

1

m
H(p′, q)μm(dp′) +

∫
P

Wm

(
θ(m) + 1

m
, p′, q

)
μm(dp′).

By concavity of Wm with respect to p, we have∫
P

Wm

(
θ(m) + 1

m
, p′, q

)
μm(dp′) ≤ Wm

(
θ(m) + 1

m
, p, q

)
.

Hence

0 ≤
∫
P

H(p′, q)μm(dp′) +m

[
Wm

(
θ(m) + 1

m
, p, q

)
−Wm

(
θ(m)

m
, p, q

)]
.

Since θ(m)
m is a global maximum of Wm(·, p, q)− φ(·) on {0, . . . ,m− 1}, one has

Wm

(
θ(m) + 1

m
, p, q

)
−Wm

(
θ(m)

m
, p, q

)
≤ φ

(
θ(m) + 1

m

)
− φ

(
θ(m)

m

)

so that

(18) 0 ≤
∫
P

H(p′, q)μm(dp′) +m

[
φ

(
θ(m) + 1

m

)
− φ

(
θ(m)

m

)]
.

Since MP
p is compact, one can assume without loss of generality that {μm} converges

to some μ. Note that μ belongs to P(t, p, q,W ) by upper semicontinuity and uniform
convergence of Wm to W . Hence μ is nonrevealing: μ = δp. Thus, passing to the
limit in (18), one obtains

0 ≤ H(p, q) + φ′(t).

The comparison principle in this case is given by the next result.
Lemma 17. Let W1 and W2 in T satisfy PS1, PS2, and
• PS3: W1(1, p, q) ≤ W2(1, p, q) for any (p, q) ∈ Δ(K)×Δ(L).

Then W1 ≤ W2 on [0, 1]×Δ(K)×Δ(L).
The proof is exactly similar to the proof of Lemma 9.
We are now ready to prove the convergence result for limn→∞ vn.
Proposition 18. Wn converges uniformly to the unique point W ∈ T that satis-

fies the variational inequalities PS1 and PS2 and the terminal condition W (1, p, q) =
0. Consequently, vn(p, q) converges uniformly to v(p, q) = W (0, p, q) and W (t, p, q) =
(1− t)v(p, q). Moreover v = MZ(H).

Proof. Let W be any limit point of the relatively compact family Wn. Then, from
Lemma 16, W ∈ T0 satisfies the variational inequalities PS1 and PS2. Moreover
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W (1, p, q) = 0. Since, from Lemma 17, there is at most one map fulfilling these
conditions, we obtain convergence.

Consequently, vn(p, q) converges uniformly to V (p, q) = W (0, p, q) andW (t, p, q) =
(1− t)V (p, q).

In particular, if one chooses as a test function φ(t) = W (t, p, q), then φ′(t) =
−V (p, q), so that PS1 and PS2 reduce to A1 and A2. One concludes by using the
variational characterization of MZ(u) in Proposition 14.

3.3. General evaluation. The same results extend to the general evaluation
case defined by a partition Π with μn decreasing. The existence of VΠ is obtained in
two steps. We first let V n

Π be 0 on [tn, 1] and define inductively V n
Π (tm, ., .) for m < n

by

(19) V n
Π (tm, p, q) = valMP

p ×MQ
q

∫
P×Q

[μm+1H(p′, q′)+V n
Π (tm+1, p

′, q′)]μ(dp′)ν(dq′).

It follows that V n
Π ∈ G by Lemma 12 and converges uniformly to VΠ. Then the proof

follows exactly the same steps as in section 2.

3.4. Time-dependent case. We consider here the case where the function H
may evolve.

To be able to study the asymptotic behavior, one has to define H directly in the
limit game: the map H is a continuous real function on [0, 1]× P ×Q.

For each integer n, let Zn(1, p, q) := 0, and for m = 0, . . . , n−1 define Zn(
m
n , p, q)

inductively as follows:

(20) Zn

(m
n
, p, q

)
= valMP

p ×MQ
q

∫
P×Q

[
1

n
H

(m
n
, p′, q′

)
+ Zn

(
m+ 1

n
, p′, q′

)]
μ(dp′)ν(dq′).

By induction each function Zn(
m
n , ., .) is in G, and one can show as in Lemma 15 that

Zn is uniformly Lipschitz continuous on {m
n , m ∈ {0, . . . , n}} × P ×Q.

Remark. An alternative choice is to replace 1
nH(mn , p′, q′) by

∫ m+1
n

m
n

H(t, p′, q′)dt.
Note that the projective operator is the same as in the autonomous case. Let T be

the set of real functions Z on [0, 1]×P×Q such that for all t ∈ [0, 1], Z(t, ., .) ∈ S. We
define P(t, p, q, Z) and Q(t, p, q, Z) as before and denote by Z0 the set of accumulation
points of the family Zn. We note that Z0 ⊂ T .

We define two properties for a function Z ∈ T and all C1 test function φ : [0, 1] →
R:

• PST1: If, for some t ∈ [0, 1), P(t, p, q, Z) is nonrevealing and Z(·, p, q)−φ(·)
has a global maximum at t, then H(t, p, q) + φ′(t) ≥ 0.

• PST2: If, for some t ∈ [0, 1), Q(t, p, q, Z) is nonrevealing and Z(·, p, q)−φ(·)
has a global minimum at t, then H(t, p, q) + φ′(t) ≤ 0.

Lemma 19. Any Z ∈ Z0 satisfies PST1 and PST2.
Proof. Let t ∈ [0, 1), let p and q be such that P(t, p, q, Z) is nonrevealing, and

Z(·, p, q)− φ(·) admits a global maximum at t. Adding (· − t)2 to φ if necessary, we
can assume that this global maximum is strict.

Let Znk
be a sequence converging uniformly to Z. Write m = nk and define

θ(m) ∈ {0, . . . ,m − 1} such that θ(m)
m is a global maximum of Zm(·, p, q) − φ(·) on
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{0, . . . ,m− 1}. t is a strict maximum θ(m)
m → t. By (20) we have that

Zm

(
θ(m)

m
, p, q

)

= sup
μ∈MP

p

inf
ν∈MQ

q

∫
P×Q

[
1

m
H

(
θ(m)

m
, p′, q′

)
+ Zm

(
θ(m) + 1

m
, p′, q′

)]
μ(dp′)μ(dq′).

Let μm be optimal for player I in the above formula and let ν = δq be the Dirac mass
at q. Then

Zm

(
θ(m)

m
, p, q

)
≤

∫
P

1

m
H

(
θ(m)

m
, p′, q′

)
μm(dp′)+

∫
P

Zn

(
θ(m) + 1

m
, p′, q

)
μm(dp′).

By concavity of Zm with respect to p, we have∫
P

Zm

(
θ(m) + 1

m
, p′, q

)
μm(dp′) ≤ Zm

(
θ(m) + 1

m
, p, q

)
.

Hence

0 ≤
∫
P

H

(
θ(m)

m
, p′, q′

)
μm(dp′) +m

[
Zm

(
θ(m) + 1

m
, p, q

)
− Zm

(
θ(m)

m
, p, q

)]
.

Since θ(m)
m is a global maximum of Zϕ(m)(·, p, q)− φ(·) on {0, . . . ,m− 1}, one has

Zm

(
θ(m) + 1

m
, p, q

)
− Zm

(
θ(m)

m
, p, q

)
≤ φ

(
θ(m) + 1

m

)
− φ

(
θ(m)

m

)
.

MP
p is compact, and one can assume without loss of generality that {μm} converges

to some μ. Note that μ belongs to P(t, p, q, Z) by upper semicontinuity and uniform
convergence of Zn to Z. Hence μ = δp is nonrevealing. Thus, passing to the limit,
one obtains

0 ≤ H(t, p, q) + φ′(t).

The comparison principle in this case is given by the next result.
Lemma 20. Let Z1 and Z2 in T satisfy PS1, PS2, and
• PS3: Z1(1, p, q) ≤ Z2(1, p, q) for any (p, q) ∈ Δ(K)×Δ(L).

Then Z1 ≤ Z2 on [0, 1]×Δ(K)×Δ(L).
Proof. We argue by contradiction, assuming that, for some γ > 0 small,

max
t∈[0,1],p∈P,q∈Q

[Z1(t, p, q)− Z2(t, p, q)− γ(1− t)] = δ > 0.

Then, for ε > 0 sufficiently small,
(21)

δ(ε) := max
t∈[0,1],s∈[0,1],p∈P,q∈Q

[
Z1(t, p, q)− Z2(s, p, q)−

(t− s)2

2ε
− γ(1− s)

]
> 0.

Moreover δ(ε) → δ as ε → 0.
Hence as before there is (tε, sε, pε, qε), point of maximum in (12), such that

P(tε, pε, qε,W1) is nonrevealing for player I and Q(sε, pε, qε,W2) is nonrevealing for
player J.
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Finally, we note that tε < 1 and sε < 1 for ε sufficiently small, because δ(ε) > 0 and
Z1(1, p, q) ≤ Z2(1, p, q) for any p, q by P3.

Since the map t → Z1(t, pε, qε) − (t−sε)
2

2ε has a global maximum at tε, and since
P(tε, pε, qε,W1) is nonrevealing for player I, condition PST1 implies that

(22) H(tε, pε, qε) +
tε − sε

ε
≥ 0.

In the same way, since the map s → W2(s, pε, qε) +
(tε−s)2

2ε + γ(1 − s) has a global
minimum at sε, and since Q(sε, pε, qε,W2) is nonrevealing for player J, we have by
condition PST2 that

H(sε, pε, qε) +
tε − sε

ε
+ γ ≤ 0.

Combining (22) with the previous inequality implies that

H(sε, pε, qε)−H(tε, pε, qε) + γ ≤ 0.

Letting ε → 0, we get a contradiction because sε and tε converge (up to some subse-
quence) to the same limit t̄.

We are now ready to prove the convergence result for Zn.
Proposition 21. Zn converges uniformly to the unique point Z ∈ T that satisfies

the variational inequalities PST1 and PST2 and the terminal condition Z(1, p, q) =
0.

Proof. Let Z be any limit point of the relatively compact family Zn. Then, from
Lemma 19, W ∈ T0 satisfies the variational inequalities PST1 and PST2. Moreover,
Z(1, p, q) = 0. Since, from Lemma 20, there is at most one map fulfilling these
conditions, we obtain convergence.

Remark. The same result obviously holds for any sequence of decreasing evalua-
tion.

4. Absorbing games. An absorbing game is a stochastic game where only one
state is nonabsorbing. In the other states one can assume that the payoff is constant
(equal to the value), and thus the game is defined by the following elements: two
finite sets I and J , two (payoff) functions f , g from I × J to [−1, 1], and a function
π from I × J to [0, 1] .

The repeated game with absorbing states is played in discrete time as usual. At
stage m = 1, 2, . . . (if absorption has not yet occurred) player 1 chooses im ∈ I and,
simultaneously, player 2 chooses jm ∈ J :

(i) the payoff at stage m is f (im, jm),
(ii) with probability 1 − π (im, jm) absorption is reached and the payoff in all

future stages n > m is g (im, jm), and
(iii) with probability π (im, jm) the situation is repeated at stage m+ 1.
Recall that the asymptotic analysis for these games is due to Kohlberg [5], who

also proved the existence of a uniform value in the case of standard signaling.

4.1. The discounted game. While the spirit of the proof is the same as in
the general case, we first present the discounted case, where the argument is more
transparent.

Define π∗(i, j) = 1− π(i, j), f∗(i, j) = π∗(i, j)× g(i, j) and extend bilinearly any
ϕ : I × J → R to RI ×RJ as follows: ϕ(α, β) =

∑
i∈I,j∈J αiβjϕ(i, j).
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vλ is the only solution of vλ = T (λ, vλ):

vλ = valΔ(I)×Δ(J)[λf(x, y) + (1− λ)(f∗(x, y) + (1− π∗(x, y))vλ)].

Theorem 22. As λ → 0, vλ converges to v given by

(23) v = val((x,α),(y,β))∈(Δ(I)×RI
+)×(Δ(J)×RJ

+)

f(x, y) + f∗(α, y) + f∗(x, β)
1 + π∗(α, y) + π∗(x, β)

.

Remark. The existence of a value is a part of the theorem. This formula is simpler
than the one established in Laraki [10].

Proof. Consider v1 as an accumulation point of the family {vλ} and let vλn

converges to v1.
We will show that

(24) v1 ≤ sup
(x,α)∈Δ(I)×RI

+

inf
(y,β)∈Δ(J)×RJ

+

f(x, y) + f∗(α, y) + f∗(x, β)
1 + π∗(α, y) + π∗(x, β)

.

A dual argument proves at the same time that the family {vλ} converges and that
the auxiliary game has a value.

Let rλ(x, y) be the total discounted payoff induced by a pair of stationary strate-
gies (x, y) ∈ Δ(I)×Δ(J). Then

rλ(x, y) =
λf(x, y) + (1− λ)f∗(x, y)

λ+ (1− λ)π∗(x, y)
.

In particular, for any xλ optimal for player 1 one obtains

(25) vλ ≤ λf(xλ, j) + (1− λ)f∗(xλ, j)

λ+ (1− λ)π∗(xλ, j)
∀j ∈ J.

Then one can write

(26) vλ ≤
f(xλ, j) + f∗( (1−λ)xλ

λ , j)

1 + π∗( (1−λ)xλ

λ , j)
= cj(λ) ∀j ∈ J.

Note that the ratio f∗( (1−λ)xλ

λ , j)/π∗( (1−λ)xλ

λ , j) is bounded, hence cj(λ) also is
bounded. Thus any accumulation point of cj(λn) is greater than v1 . Hence by
taking an appropriate subsequence in (26) for each j ∈ J , we obtain the following:

∃ x ∈ Δ(I) accumulation point of {xλn} s.t. for all ε > 0, ∃ α =
(1−λ)xλ

λ
∈ RI

+ such
that

(27) v1 ≤ f(x, j) + f∗(α, j)
1 + π∗(α, j)

+ ε ∀j ∈ J.

Note that by linearity the same inequality holds for any y ∈ Δ(J).
On the other hand, v1 is a fixed point of the projective operator and x is optimal

there, and hence

(28) v1 ≤ π(x, y) v + f∗(x, y) ∀y ∈ Δ(J).

Inequality (28) is linear and thus extends to

(29) π∗(x, β) v1 ≤ f∗(x, β) ∀β ∈ RJ
+.
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We multiply (27) by the denominator 1 + π∗(α, y), and we add to (29) to obtain the
property that for all ε > 0, ∃ x ∈ Δ(I) and α ∈ RI

+ such that

(30) v1 ≤ f(x, y) + f∗(α, y) + f∗(x, β)
1 + π∗(α, y) + π∗(x, β)

+ ε ∀y ∈ Δ(J), β ∈ RJ
+,

which implies (24), and hence the result.

4.2. General evaluation. In this section we consider general evaluation prob-
abilities μ = (μm) on N

� such that (μm) is nonincreasing: this later assumption is
implicit throughout the result below. Recall that the payoff corresponding to an eval-
uation μ is

∑
m μmhm, where hm is the payoff at stage m described above and vμ is

the value of this game. Our aim is to show that the family vμ has a limit as the “size”
of the evaluation probability, i.e., π(μ) := μ1 = supm μm tends to 0.

Theorem 23. As π(μ) → 0, vμ converges to v given by

(31) v = val((x,α),(y,β))∈(Δ(I)×RI
+)×(Δ(J)×RJ

+)

f(x, y) + f∗(α, y) + f∗(x, β)
1 + π∗(α, y) + π∗(x, β)

.

The proof requires several steps. The main idea is, as before, to embed the original
problem into a game on [0, 1]. Recall that μ induces a partition Π = {tm} of [0, 1]
with t0 = 0 and tm =

∑m
k=1 μk for m ≥ 1. Let us denote by Wμ(tm) the value of

the game starting at time tm, i.e., with evaluation μm+k for the payoff hk at stage k.
Note that Wμ is actually given by Wμ(1) = 0 and the recursive formula
(32)
Wμ(tm) = val(x,y)∈Δ(I)×Δ(J) [μm+1f(x, y) + π(x, y)Wμ(tm+1) + (1− tm+1)f

∗(x, y)] .

Recall that, under our assumption on the monotonicity of the (μm), the (linear in-
terpolation of) Wμ is C-Lipschitz continuous in [0, 1], where C depends only on
the bounds on the payoff (see Lemma 1). Let us set, for any (t, a, b, x, α, y, β) ∈
[0, 1]×R×R×Δ(I)×RI

+ ×Δ(J)×RJ
+,

h(t, a, b, x, α, y, β) =
f(x, y) + (1 − t)[f∗(α, y) + f∗(x, β)]− [π∗(α, y) + π∗(x, β)] a+ b

1 + π∗(α, y) + π∗(x, β)
.

We define the lower and upper Hamiltonian of the game as

H−(t, a, b) = sup
(x,α)∈Δ(I)×RI

+

inf
(y,β)∈Δ(J)×RJ

+

h(t, a, b, x, α, y, β)

and

H+(t, a, b) = inf
(y,β)∈Δ(J)×RJ

+

sup
(x,α)∈Δ(I)×RI

+

h(t, a, b, x, α, y, β).

The variational characterization of any cluster point U of the family Wμ as π(μ) → 0
uses the following properties, which hold for all t ∈ [0, 1) and any C1 function φ :
[0, 1] → R:

• R1: If U(·)−φ(·) admits a global maximum at t ∈ [0, 1), thenH−(t, U(t), φ′(t))
≥ 0.

• R2: If U(·)−φ(·) admits a global minimum at t ∈ [0, 1), thenH+(t, U(t), φ′(t))
≤ 0.
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Lemma 24. Any accumulation point U(·) of Wμ(·) satisfies R1 and R2.
Proof. Let us prove the first variational inequality, with the second being obtained

by symmetry.
Let t be such that U(·) − φ(·) admits a global maximum at t ∈ [0, 1). Adding

(· − t)2 to φ if necessary, we can assume that this global maximum is strict.
Let μn = {μn

m} be a sequence of evaluation probabilities on N
� such that π(μn) →

0 and Wn := Wμn converges to U . Let tnθ(n) be a global maximum of Wn(·) − φ(·)
over the set {tnm}. Then, tnθ(n) → t. Since t < 1, for n large enough θ(n) + 1 is well

defined, and from (32) we have

Wn(t
n
θ(n)) = max

x∈Δ(I)
min

y∈ΔJ)

[
μn
θ(n)+1f(x, y) + π(x, y)Wn(t

n
θ(n)+1) + (1 − tnθ(n)+1)f

∗(x, y)
]
.

Let xn be optimal for player 1 in the above formula. By compactness one can assume
that xn converges to some x (up to a subsequence).

To simplify the notations, we set

νn = μn
θ(n)+1, sn = tnθ(n), s

′
n = tnθ(n)+1 = sn + νn, αn =

xn

νn
.

Given j ∈ J we have

Wn(sn) ≤ νnf(xn, j) + π(xn, j)Wn(s
′
n) + (1− s′n)f

∗(xn, j).

Using the fact that Wn(·) − φ(·) has a global maximum at sn, the above inequality
can be rephrased as

(33) 0 ≤ f(xn, j) +
φ(s′n)− φ(sn)

νn
− π∗(αn, j)Wn(s

′
n) + (1− s′n)f

∗(αn, j).

We divide this inequality by 1+ π∗(αn, j) so that the quotient is uniformly bounded.
Hence, going to the limit and taking subsequences for each j one after the other, we
obtain that for any ε > 0 there exists α such that

0 ≤ f(x, j) + φ′(t)− π∗(α, j)U(t) + (1− t)f∗(α, j)
1 + π∗(α, j)

+ ε ∀j ∈ J.(34)

The same inequality holds for any y ∈ Δ(J) instead of j by linearity.
Now x is optimal for U(t) leading to

0 ≤ (1− t)f∗(x, y)− π∗(x, y)U(t) ∀y ∈ Δ(J),(35)

and by linearity the same inequality holds for any β ∈ RJ
+.

We multiply (34) by (1 + π∗(α, y)) and we add (35) to obtain for all y ∈ Δ(J),
for all β ∈ RJ

+,

0 ≤ f(x, y) +φ′(t)− (π∗(α, y)+ π∗(x, β))U(t) + (1− t)(f∗(α, y)+ f∗(x, β))
1 + π∗(α, y) + π∗(x, β)

+ ε.(36)

Hence for any ε > 0, there exists x ∈ Δ(I), α ∈ RI
+ such that for all y ∈ Δ(J), for all

β ∈ RJ
+,

h(t, U(t), φ′(t), x, α, y, β) + ε ≥ 0,

which implies H−(t, U(t), φ′(t)) ≥ 0.
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Next we show a comparison principle.
Lemma 25. Let U1 and U2 be two continuous functions satisfying R1–R2 and

U1(1) ≤ U2(1). Then U1 ≤ U2 on [0, 1].
Proof. By contradiction, suppose that there is some t ∈ [0, 1] such that U1(t) >

U2(t). Then, for γ > 0 sufficiently small,

max
t∈[0,1]

[U1(t)− U2(t) + γ(t− 1)] = δ > 0.

Let ε > 0 and set

δ(ε) = max
(t,s)∈[0,1]×[0,1]

[
U1(t)− U2(s)−

(t− s)2

2ε
+ γ(s− 1)

]
.

Let (tε, sε) be a maximum point in the above expression. Then, δ(ε) → δ as ε → 0,
and, for ε sufficiently small, tε < 1 and sε < 1 because U1(1) ≤ U2(1). From standard
arguments, tε − sε → 0 as ε → 0.

Since the map U1(t) − (t−sε)
2

2ε has a global maximum at tε ∈ [0, 1), we have by
condition R1 that

(37) H−
(
tε, U1(tε),

tε − sε
ε

)
≥ 0.

In the same way, since the map s → U2(s) +
(tε−s)2

2ε − γ(s− 1) has a global minimum
at sε, we have by condition R2 that

(38) H+

(
sε, U2(sε),

tε − sε
ε

+ γ

)
≤ 0.

To simplify the expressions, let us set Uε
1 = U1(tε), U

ε
2 = U2(sε), and bε = tε−sε

ε .
From (37) and (38) there exists (xε, αε) ∈ Δ(I) ×RI

+ such that

0 ≤ ε2 + inf
(y,β)

h (tε, U
ε
1 , bε, xε, αε, y, β)

and (yε, βε) ∈ Δ(J)×RJ
+ such that

0 ≥ −ε2 + sup
(x,α)

h (sε, U
ε
2 , bε + γ, x, α, yε, βε) .

Then, in view of the definition of h, we have

2ε2 ≥ h (sε, U
ε
2 , bε + γ, xε, αε, yε, βε)− h (tε, U

ε
1 , bε, xε, αε, yε, βε)

≥ (tε − sε)[f
∗(αε, yε) + f∗(xε, βε)]− [π∗(αε, yε) + π∗(xε, βε)] (U

2
ε − U1

ε ) + γ

1 + π∗(αε, yε) + π∗(xε, βε)
.

Now we use U1
ε − U2

ε ≥ δ(ε) to obtain

2ε2 ≥ (tε − sε)[f
∗(αε, yε) + f∗(xε, βε)] + [π∗(αε, yε) + π∗(xε, βε)] δ(ε) + γ

1 + π∗(αε, yε) + π∗(xε, βε)

≥ (tε − sε)[f
∗(αε, yε) + f∗(xε, βε)]

1 + π∗(αε, yε) + π∗(xε, βε)
+ min{δ(ε), γ}.

Since tε − sε → 0 and the quotient f∗(αε,yε)+f∗(xε,βε)
1+π∗(αε,yε)+π∗(xε,βε)

remains bounded as ε → 0,

we get 0 ≥ min{δ, γ}, which is impossible.
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To summarize, we now know that the family (Wμ) has a unique accumulation
point U and that this accumulation point is the unique continuous map satisfying
R1–R2 and U(1) = 0. The next lemma, which characterizes the limit function U ,
completes the proof of Theorem 23.

Lemma 26. Let U(·) be the unique continuous solution to R1–R2 with U(1) = 0.
Then U(t) = (1 − t)v, where v is given by (31).

Proof. Let us first show that U is homogeneous in time. This could be obtained
by the fact that U is the limit of the Wπ , but we give here a direct argument. For
this we prove that Uλ(t) :=

1
λU(λt + (1 − λ)) equals U(t) for any t ∈ [0, 1] and any

λ ∈ (0, 1) by showing that Uλ satisfies R1–R2 and Uλ(1) = 0. The last point being
obvious, let us check, for instance, that R1 holds for Uλ. Since U satisfies R1 for
H−, Uλ satisfies R1 for H−

λ given by

H−
λ (t, a, b) = H−(λt+ (1− λ), λa, b).

So we just have to show that H−
λ (t, a, b) ≥ 0 implies H−(t, a, b) ≥ 0. Assume that

H−
λ (t, a, b) ≥ 0. Then, for any ε > 0, there exists (x, α) ∈ Δ(I) ×RI

+ such that, for
all (y, β) ∈ Δ(J) ×RJ

+,

−ε ≤ f(x, y) + (1− (λt+ (1− λ)))[f∗(α, y) + f∗(x, β)] − [π∗(α, y) + π∗(x, β)] λa+ b

1 + π∗(α, y) + π∗(x, β)
.

Setting α′ = λα and β′ = λβ we get

− ε

λ
≤ f(x, y) + (1− t)[f∗(α′, y) + f∗(x, β′)]− [π∗(α′, y) + π∗(x, β′)]λa+ b

1 + π∗(α′, y) + π∗(x, β′)

because

−ε(1 + π∗(α, y) + π∗(x, β))
1 + π∗(α′, y) + π∗(x, β′)

≥ − ε

λ
.

Therefore there exists (x, α′) ∈ Δ(I)×RI
+ such that, for all (y, β′) ∈ Δ(J)×RJ

+, one
has h(t, a, b, x, α, y, β) ≥ −ε/λ, i.e., H−(t, a, b) ≥ 0.

Next we identify v := U(0). From the equation satisfied by U(t) = (1 − t)v we
have, using φ(t) = U(t),

H−(t, (1− t)v,−v) ≥ 0 and H+(t, (1 − t)v,−v) ≤ 0 ∀t ∈ [0, 1].

Let us choose t = 0. Let ε > 0 and (x, α) be such that for any (y, β)

−ε ≤ f(x, y) + [f∗(α, y) + f∗(x, β)] − [π∗(α, y) + π∗(x, β)] v − v

1 + π∗(α, y) + π∗(x, β)
.

Then

v − ε ≤ f(x, y) + f∗(α, y) + f∗(x, β)
1 + π∗(α, y) + π∗(x, β)

so that

v − ε ≤ sup
(x,α)

inf
(y,β)

f(x, y) + f∗(α, y) + f∗(x, β)
1 + π∗(α, y) + π∗(x, β)

.

The opposite inequality

v + ε ≥ inf
(y,β)

sup
(x,α)

f(x, y) + f∗(α, y) + f∗(x, β)
1 + π∗(α, y) + π∗(x, β)

can be established in a symmetric way, which completes the proof of the lemma.
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5. Extensions and comments.

5.1. Nondecreasing evaluations. In stochastic games with general evaluation,
to obtain the same asymptotic limit as the mesh of the partition tends to zero, it is
necessary to assume the sequence of evaluation probabilities μn on N

∗ to be decreasing:
μn
m ≥ μn

m+1. For example, if the stochastic game oscillates deterministically between
state 1 and state 2, the asymptotic occupation measure depends strongly on μn. In
fact if μn is decreasing, then asymptotically, both states have a total weight of 1/2.
However, if {μn

2m+1} is decreasing in m and if μn
2m = (μn

2m+1)
2, then the asymptotic

occupation measure puts a total weight of 1 on the state at stage 1.
However, in all games analyzed in this paper, the monotonicity assumption on

μm is not necessary: the asymptotic value exists and is the same for all evaluation
measures. This is due to the irreversibility of these games. In incomplete information
repeated games, the results hold because of two reasons: (1) a player is always better
off having some private information (which implies concavity of the value function in p
and convexity in q), and (2) a player has always the possibility to play a nonrevealing
strategy. Then VΠ is C-Lipschitz continuous: this is the content of Lemma 15.

Consequently, the same proof as for decreasing evaluations applies, and so the
asymptotic value exists in a strong sense and is characterized as the unique solution
of the variational inequalities P1 and P2. A similar argument shows that the same
conclusion holds for splitting games.

In absorbing games, this conclusion holds because once the state changes, it is
absorbing. The proof is, however, more tricky. Let Wμn(tk) be the value of the game
starting at time tk. Then
(39)
Wμn(tk) = val(x,y)∈Δ(I)×Δ(J)

[
μn
k+1f(x, y) + π(x, y)Wμn (tk+1) + (1− tk+1)f

∗(x, y)
]
.

As shown in Lemma 1, monotonicity of (μn
m) in m guarantees that Wμn is C-Lipschitz

continuous. Without this assumption, it is not clear how to show uniform Lipschitz
continuity.

We prove uniform convergence but using different techniques, standard in dif-
ferential game theory. Namely, consider the Barles–Perthame lower and upper half-
relaxed limits. Explicitly, for every t, define W+(t) = lim suptn→t Wμn(tn), and
similarly W−(t) = lim inftn→t Wμn(tn). Then, W+(t) is upper-semicontinuous and
W−(t) is lower-semicontinuous. A proof similar to the one given for the decreasing
case (with only small modifications) shows that (1) W+ satisfies R1, (2) W− satisfies
R2, and (3) any upper-semicontinuous function satisfying R1 is smaller than any
lower-semicontinuous function satisfying R2 (whenever they agree on the terminal
condition). This implies uniform convergence and uniqueness of the limit.

Observe also that in the three classes of games analyzed in this paper, the ex-
istence of the asymptotic value in a strong sense (for all evaluations not necessarily
decreasing) is new. Actually, the existence of the uniform value (as in absorbing
games; see Kohlberg [5]) implies only the same asymptotic value for all decreasing
evaluations.

A natural question arises: what are the other classes of repeated games for which
the asymptotic value is the same for all evaluations? Clearly, this is quite different
from the existence of a uniform value. In the example above (stochastic game al-
ternating between states 1 and 2), a uniform value exists but the asymptotic value
depends on the sequence of evaluations. In incomplete information repeated games
and in splitting games, the uniform value does not exist while there is a “strong”
asymptotic value.
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5.2. Other extensions.
More general splitting games. Upper and lower half-relaxed limits have been used

in Laraki [6] to show the existence of the asymptotic value in discounted splitting
games when P and Q are not product of simplexes. Without this assumption, the
equicontinuity of the family of discounted values with respect to p and q is not guaran-
teed. Combining the technique in Laraki [6] and the continuous time approach allows
us to show the existence of the asymptotic value for all evaluations under the same
general assumptions as the one in Laraki [6].

Repeated games with public random duration. Neyman and Sorin [13] studied
repeated games with random duration. Those are games in which the weight μm

of period m follows a stochastic process. In our model, this weight is deterministic.
Neyman and Sorin [13] show that when the uniform value exists, the asymptotic value
exists for all random duration. It is plausible to prove existence of an asymptotic value
in repeated games with random duration using similar tools. The difference would be
in the recursive equation: an additional expectation should be added since the time
tk+1 at which the continuation game will start is random and not deterministic.

Repeated games with incomplete information: The dependent case. The result
of Mertens and Zamir [11] holds in a more general framework in which the private
information of the players on k ∈ K may be correlated. However, one can write a
recursive equation on the state space Δ(K). Consequently, the same proof as in the
independent case allows us to prove existence, uniqueness, and characterization of the
asymptotic value for all evaluation coefficients μ.

5.3. Conclusion. The main contribution of this approach is to provide a unified
treatment of the asymptotic analysis of the value of repeated games:

- It applies to all evaluations and shows the interest of the limiting game played
on [0, 1]. Further research will be devoted to a formal construction and to the analysis
of optimal strategies.

- It allows us to treat incomplete information games as well as absorbing games.
We strongly believe that similar tools will allow us to analyze more general classes.

- It shows that techniques introduced in differential games where the dynamics on
the state are smooth can be used in a repeated game framework. On the other hand,
the stationary aspect of the payoff functions in repeated games is no longer necessary
to obtain asymptotic properties.
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